BIG IDEAS

Number represents and describes quantity: Parts of wholes can be represented by equivalent fractions.

Developing computational fluency comes from a strong sense of number: Flexibility in working with numbers extends to operations with larger (multi-digit) numbers.

We use patterns to
represent identified regularities and to form generalizations: Number patterns can be expressed using variables in tables.

We can describe, measure, and compare spatial relationships: Closed shapes have area and perimeter.

Analyzing data and

 chance help us to compare and interpret: Graphs can be used to show many-to-one correspondence.
Learning Standards

Curricular Competencies

Students are expected to be able to do the following:

Reasoning and analyzing

- Estimate reasonably
- Develop mental math strategies and abilities to make sense of quantities
- Use reasoning and logic to explore and make connections

Understanding and solving

- Use multiple strategies [visual, oral, role-play, experimental, written, symbolic] to engage in problem solving (e.g., visual, oral, role-play, experimental, written, symbolic)
- Develop, construct, and apply mathematical understanding through role-play, inquiry, and problem solving
- Engage in problem-solving experiences that are connected to place, story, and cultural practices relevant to the local community

Communicating and representing

- Communicate [concretely, pictorially, symbolically, and by

Content

Students are expected to know the following:

- number concepts to 1000000 [counting: multiples; flexible counting strategies; whole number benchmarks; numbers to 1 000000 can be arranged and recognized: comparing and ordering numbers; estimating large quantities; place value: 100 000s, 10 000s, 1000s, 100s, 10s, and 1s; understanding the relationship between digit places and their value, to 1000 000]
- decimals to thousandths
- equivalent fractions
- whole-number, fraction, and decimal [Two equivalent fractions are two ways to represent the same amount (having the same whole).; comparing and ordering of fractions and decimals; addition and subtraction of decimals to thousandths; estimating decimal sums and differences; estimating fractions with benchmarks (e.g., zero, half, whole)] benchmarks
- addition and subtraction to 1000000 [using flexible computation strategies involving taking apart (eg., decomposing using friendly numbers and compensating) and combining numbers
using spoken or written Language to express, describe, explain, and apply mathematical ideas] in many ways (concretely, pictorially, symbolically, and by using spoken or written language to express, describe, explain, and apply mathematical ideas)
- Describe, create, and interpret relationships through concrete, pictorial, and symbolic representations
- Use technology [pen, pencil, paper, crayons, iPad, camera] appropriately to explore mathematics, solve problems, record, communicate, and represent thinking
in a variety of ways; estimating sums and differences to 10 000; using addition and subtraction in real-life contexts and problem-based situations; whole-class number talks]
- multiplication and division to three digits [understanding the relationships between multiplication and division, multiplication and addition, division and subtraction; using flexible computation strategies (eg., decomposing, distributive principle, commutative principle, repeated addition, repeated subtraction); using addition and subtraction in real-life contexts and problem-based situations; whole-class number talks], including division with remainders
- addition and subtraction of decimals to thousandths [estimating decimal sums and differences; using visual models such as base 10 blocks, place value mats, grid paper, and number Lines; using addition and subtraction in real-Life contexts and problem-based situations; whole-class number talks]
- addition and subtraction facts to 20 [Teachers can provide opportunities for authentic practice, building on previous grade-Level addition and subtraction facts; applying strategies and knowledge of addition and subtract facts in real-life contexts and problem-based situations, as well as when making math-to-math connections (eg., for $800+$ 700, you can annex the zeros and use the knowledge of $8+$ 7 to find the total)] (extending computational fluency)
- multiplication and division facts to 100 [Provide opportunities for concrete and pictorial representations of multiplication. Use games to provide opportunities for authentic practice of multiplication computations.; looking for patterns in numbers such as a hundred chart to further develop their understanding of multiplication computation; Connect multiplication to skip-counting.; Connect multiplication to division and repeated addition.; Memorization of facts is not intended this level.; Students will become more fluent with these facts.; using mental math strategies such as doubling and halving, annexing, and distributive property. Students should be able to recall many multiplication facts by the end of Grade 5 (i.e. 2s, 3s, 4s, 5s, 10s); developing computational fluency with facts to 100] (emerging computational fluency)
- rules for increasing and decreasing patterns with words, numbers, symbols, and variables
- one-step equations [solving one-step equations with a variable; expressing a given problem as an equation using symbols (eg., $4+X=15$)] with variables
- area measurement of squares and rectangles
- relationships between area and perimeter [measuring area of squares and rectangles using tiles, geoboards, grid paper; investigating perimeter and area and how they are related to but not dependent on each other]
- duration, using measurement of time [understanding elapsed time and duration; applying concepts of time in real-life contexts and problem-based situations]
- classification [investigating 3D objects and 2D shapes, based on multiple attributes; describing and sorting quadrilaterals; describing and constructing rectangular and triangular prisms; identifying prisms in the environment] of prisms and pyramids
- single transformations [single transformations
(slide/translation, flip/reflection, turn/rotation); using concrete materials with a focus on the motion of transformations]
- one-to-one correspondence and many-to-one correspondence [many-to-one correspondence: one symbol represents a group or value (eg., on a bar graph, one square may represent five cookies)] using double bar graphs
- probability experiments [predicting outcomes of independent events (eg., when you spin using one spinner and it lands on a single colour); predicting single outcomes (eg., when you spin using one spinner and it lands on a single colour); using spinners, rolling dice, pulling objects out of a bag], focusing on independence
- financial literacy [predicting outcomes of independent events (eg., when you spin using one spinner and it lands on a single colour); predicting single outcomes (eg., when you spin using one spinner and it lands on a single colour); using spinners, rolling dice, pulling objects out of a bag] - monetary calculations, including making change with amounts to 1000 dollars and developing simple financial plans

Learning Standards (continued)

Curricular Competencies

Content

Connecting and reflecting

- Visualize and describe mathematical concepts
- Connect mathematical concepts to each other and make mathematical connections [in daily activities, local and traditional practices, the environment, popular media and news events, cross-curricular integration] to the real world
- Share and reflect upon mathematical thinking
- Draw upon local First Peoples knowledge and/or expertise of local

Elders to make connections to mathematical topics and concepts

